
Oceanus: a context-aware low-cost platform for

yacht racing

Ivan Scagnetto1, Giorgio Brajnik1, Peter Gus1, and Francesco
Trevisan2

1Dept. of Mathematics, Computer Science and Physics, University
of Udine, Italy

2Polytechnic Dept. of Engineering and Architecture, University of
Udine, Italy

February 1, 2019

Abstract

We present Oceanus: a hardware and software platform designed and
developed to provide useful information to the crew of a racing yacht.
The key features of the proposed solution are its reliability and context-
awareness, in order to simplify in an intelligent way the usage of the user
interface. Furthermore, Oceanus strives to be as much as possible a low
cost architecture, both in software and hardware requirements.

Keywords: Internet of Things, Sail Racing, Context Awareness, Usability,
User Experience

1 Introduction

Modern racing yachts are equipped with several sensors and monitors that pro-
vide a wealth of information to their crews. Sensed or computed data range
from GPS-related information (position, speed, geographic course, position on
a map), to boat-related information (magnetic heading, speed over water, heel-
ing angle), and to wind and water information (direction and speed of apparent
wind, water depth). Sail racing, even for club and amateur racing, has become
more and more technological: for example, most of the crew members use po-
lar diagrams of the boat which indicate, for several points of sailing and wind
speeds, the optimal speed and heading that the boat is capable of. Such data
is used to continuously fine tuning boat steering and sails trimming, to achieve
performances that go beyond the level that the average crew can reach based
only on the “seats-of-the-pants” experience1.

1See more details on polar diagrams for example on https://www.yachtingworld.com/

features/5-tips-developing-polar-diagrams-optimise-speed-71464.

1

Figure 1: William B, the yacht used by the Uniud Sailing Lab, and typical
conditions on board during a race.

While large sailing teams (such as America’s Cup or Volvo Ocean Race
teams) can rely on high tech solutions, either on-board or on-the-ground, this
is not the case for teams with much smaller budgets. Less sophisticated IT
applications to be used on board of yachts do exist, but software developers
face a number of challenges because of the particular context in which these
applications are used, namely sail racing.

The context is characterized by the fact that crew members, while racing,
are under intense cognitive stress due to the need of making the right decision
at the right time, performing corresponding actions with precision, and in strict
coordination with other members. This can be complicated further by challeng-
ing weather or marine conditions, and the aggressive behavior of competitors
(see Fig. 1).

For these reasons the user interface (UI) of such applications needs to be
crafted with attention. The first law of usability of Steve Krug, “Don’t make
me think” [Kru00], applies very well to this context: users, which often are
non professional sailors and hence not professionally trained, cannot spend time
and attention on figuring out how to use the UI. They have to be fully con-
centrated on their sailing tasks and do not have extra cognitive bandwidth to
spare. Therefore screens of the UI should present the minimal information that
suffice to the task at hand in order to avoid information overloading. Manual
navigation between screens should be kept at the minimum to avoid distractions.

Furthermore, this kind of applications needs to provide support to different
crew roles: the helmsman needs data to optimize boat steering, sail trimmers
need data to fine tune sail shapes, and the tactician needs support for figuring

2

out strategic opportunities.
Development of suitable applications is made even more complex when we

consider that environmental conditions under which the applications are used
are generally quite demanding: in addition to running on devices being reason-
ably waterproof, other requirements come from the need to cope with strong
solar illumination at daytime, nighttime use that preserves night vision, low
energy consumption especially for mobile devices.

In the market there are mobile applications that can be used in these sit-
uations. However, they have limitations. They require installation of software
on one own’s devices, that sometimes might not be compatible. Different crew
members need to install it on their own devices. Such target devices might
not be appropriate for the context because they do not meet the requirements
mentioned above. Furthermore, they are neither extensible nor customizable,
in order to adapt to new or specific scenarios. As a consequence, the UI is often
quite complex, as the application is not targeted to specific usages. Because
of the generality of the application, context awareness is seldom implemented,
in spite of the important role it can play in simplifying the UI. For example,
context awareness can be exploited to limit the amount of shown information
to only what is relevant to the specific context; context awareness can help in
reducing controls made available in the UI to only what is needed at a given
time.

In this paper we present Oceanus, a hardware and software platform designed
to explore and develop intelligent features aimed at supporting yacht racing
crews. Oceanus encompasses a frontend system (Neptune) and a backend system
(Argos); it is a web mobile application based on low cost hardware (Raspberry
Pi and Amazon’s Kindle) and provides a UI that is tailored to a racing yacht
crew. We show how and why Oceanus was developed in a certain way, how
it satisfies most of the crucial requirements suggested above, how it features
context awareness as a key to simplify the UI, and how adoption of a “Lean
UX” and agile approach [Got13, Coh10] was beneficial to obtain a successful
result.

The application has been developed by the Uniud Sailing Lab, and has been
used in training and during club sailing races and more important championships
(namely, the 2017 Italian Offshore Sail Race and the 2017 ORC Worlds Trieste2).

The contribution of this work lies in showing how such an application can
be developed as a client-server architecture, which has not been done before
on low cost hardware. We show how this decoupling leads to benefits such as
ability to use multiple clients for different crew members, ability to use different
UI platforms and extendability of the platform. The frontend is a rich Internet
application that can be modified independently from the server. The server
can be easily extended with modules that exploit new sensors (such as Inertial
Motion Units, IMUs), and can be developed in such a way that each sensor is
monitored in a concurrent way, to avoid low latency issues due to the presence

2See https://www.campionatoitalianoaltura2017.it and http://www.orcworlds2017.

com

3

of sensors with differing response rate. We show how context awareness can be
conceived as an intelligent way to simplify usage of the UI that becomes thus
adaptive, based on inferences made on data provided by sensors. By design, we
adopted the stance that context-aware features should be as reliable and useful
as possible to maximize acceptability of Oceanus by the crews. For this reason
their design has been particularly conservative.

At this stage, Neptune is the first frontend included in Oceanus and it relies
on a context-aware module which has been implemented server-side, in order to
support clients that are as thin as possible. Finally we explain how the software
development process was organized, especially in relation to the inability to
frequently test the application in the actual situation for which it was conceived,
namely during races.

2 Neptune: Presenting Data to Racing Crews

This section describes the problem and the constraints related to the develop-
ment of the front-end system, Neptune. Then, we describe and motivate the
decisions we made in terms of context awareness and development approach.

2.1 Target Environment and Users

Neptune is used on board of a racing yacht (in the specific case it has been
used in a 35 footer), by a racing crew during races and training. The crew is
typically constituted by 7 individuals. The crew roles that are mostly involved
with Neptune are:

• the helmsman: the person who steers the boat and whose main respon-
sibility is to maximize the sailboat performance (in terms of speed and
course);

• the sail trimmers: the persons who tune the sails (jib, genoa, mainsail,
spinnaker) and whose main responsibility is to adapt sail shapes to con-
tinuously changing wind, sea, boat handling conditions;

• the tactician: the person that gives directions to the crew in terms of where
the boat should be going and whose responsibility is making both strate-
gic decisions by exploiting wind and sea conditions and tactical decisions
related to the behavior of other competitors.

During a race, individuals are very concentrated on their tasks, by handling
the boat and sails, by observing the race field, competitors, sea and weather
conditions. This requires extremely high levels of attention, and quick reaction
times as in some cases situations may be challenging. There could be non trivial
human safety issues, risks for damages and issues related with the race (losing
positions or penalties).

4

Not only cognitive stress occurs, but also physical challenges abound as well:
they may derive from bad weather, strong wind, long duration. The conse-
quences are poor equilibrium on board, inability to freely move around, in some
cases the need to move to other places (for example to counterbalance excessive
heeling caused by wind). Hands are usually busy operating boat equipments
and cannot easily be used to operate mobile devices; crew members may wear
sailing gloves; hands may be wet. Races may last or cover entire days, and for
distance races they extend over more than 24 hours. Fatigue easily ensues.

In general, during days there is a strong direct sun light, and during nights
there is no illumination, except for controlled light sources (such as red light to
preserve natural night vision).

This kind of physical environment, users and conditions constrained how
Neptune was built and its structure. In particular we opted for a low energy
consumption device, with a screen with high visibility in direct sun light, with a
relatively large view angle, and such that it can easily be hand-held or attached
to the body (of the tactician) or placed in the boat cockpit for the benefit of
the helmsman/trimmers.

2.2 Context and Context Awareness

Context is an overloaded word, with many different interpretations. What fol-
lows is a brief review of the major aspects that characterize it so that we can
then better understand how context is exploited in Neptune.

Dourish [Dou04] explores context from a technical and a social perspective,
and links the former to positivist theories and the latter to phenomenological
theories. He says: “positivist theories seek objective, independent descriptions
of social phenomena, abstracting from the detail of particular occasions or set-
tings, often in favor of broad statistical trends and idealized models”. And
phenomenological theories “... turn analytic attention away from the idea of a
stable external world that is unproblematically recognised by all, and towards
the idea of that the world, as we perceive it, is essentially a consensus of inter-
pretation”.

Nardi [Nar96] links context to distributed cognition, which is a “branch
of cognitive science devoted to the study of: the representation of knowledge
both inside the heads of individuals and in the world ...; the propagation of
knowledge between different individuals and artifacts ...; and the transforma-
tions which external structures undergo when operated on by individuals and
artifacts ... [FH91]”.

Distributed cognition is concerned with representations inside the head of
users and external artifacts that users exploit, and the transformations these
structures undergo. It tries to understand coordination between individuals,
the system and external artifacts. It focuses on a cognitive system composed of
individuals and the artifacts they use; for example, Hutchins [Hut95] describes
the activity of flying a plane, focusing on the cockpit system. Systems have goals;
in the cockpit, for example, the goal is the successful completion of a flight. The
cockpit, with its pilots and instruments forming a single cognitive system, can

5

be understood only when we understand, as a unity, the contributions of the
individual agents in the system and the coordination necessary among the agents
to enact the goal.

Dey [Dey01] provides one of the most general and often used definition of
context, namely “Any information that can be used to characterize the situation
of an entity. An entity is a person, place, or object that is considered relevant
to the interaction between a user and an application, including the user and
applications themselves”.

Further, context is categorized as (A) context related to computing infras-
tructure (network, communication, technical resources), (B) user context (user
profile, location, social situation), (C) physical context (lighting, noise, traf-
fic condition, temperature), and (D) time context (time of day, week, month;
season of the year).

Context awareness is a property of the behavior of a system. Dey [Dey01]
defines a system as context-aware if “it uses context to provide relevant infor-
mation and/or services to the user, where relevancy depends on the users task”.
In general, the purpose of context-aware features in a system is to minimize user
effort enhancing usability and enabling a better user experience.

Alegre at al. [AAC16] identified four types of interaction of users with
context-aware systems: (A) active execution, where the system acts autono-
mously depending on the context; (B) passive execution, where the system
presents options or suggestions of actions and the user is involved in actions;
(C) active configuration, where the system is able to learn from the user prefer-
ences in order to autonomously evolve his rules for future behavior; (D) passive
configuration, where the user is involved in the manual personalization of his/her
preferences, likes, and expectations of the system, after its implementation. The
authors also identified three major tasks that developers of context-aware sys-
tems may find difficult: to enumerate the set of contextual states that may
exist; to know what information could accurately determine a contextual state
within that set; and to determine what appropriate action should be taken in a
particular state.

2.3 Context awareness for Neptune

Context awareness in Neptune is driven by usability. In fact, it is seen as a way
to cope with cognitive and ergonomic demands: the attention and concentra-
tion required by the primary tasks that users are involved in (boat handling,
sails trimming, awareness of competitors and sea/wind conditions) leave little
cognitive capability to be spent on thinking on how to interpret what a user
interface displays, or on how to navigate through its screens; in addition, the
physical situation leaves little ability to physically act on the user interface and
monitor its feedback.

Context awareness features support the user in performing the primary tasks,
by switching to relevant screens, by displaying relevant information, and by
highlighting the most important and relevant information.

6

Most of the data that could be displayed on a sailing boat are contextual,
according to Dey’s definition: they show data of the boat (location, speed,
orientation, course) or of the wind (direction and speed, as measured from
an on board wind station). Context awareness though requires that data are
task-relevant, and this is much more complex to achieve with accuracy. For
an application like Neptune, to be used in a demanding environment, context
awareness has to be based on reliable decisions regarding what is the current
task that the user is involved in. And to the extent that such decisions are based
on data, they require data that are appropriately filtered, otherwise data that
change quickly are likely to lead to instability of the context aware feature.

In Neptune, task relevance is addressed in two ways. Firstly, for the helms-
man and trimmers, who cannot easily reach the UI, Neptune runs on a device
that is in the cockpit and the task that it has to address is either supporting
the crew during start or monitoring the boat performance in terms of speed
and course. Context awareness is achieved in part by automatic switching of
screens based on gathered data: after the start time the display switches from
the starting screen to the appropriate target speed/angle monitor. Furthermore,
during each of these phases (start or after start sailing), what is displayed and
how it is displayed depends on the context. During start, if the boat position
is beyond the starting line, a very salient display is used to alert all the crew
of this potentially risky situation (a penalty may ensue). During sailing after
the start, according to the point of sail (upwind, downwind, reaching, irons)
and to the tack (starboard or port) different data is displayed based on polar
curves of the boat to let the crew optimize speed and possibly course. These
changes are driven by different combinations of point of sailing and tack, which
are automatically sensed and determined.

Secondly, for the tactician, Neptune runs on a device that is hand-held or
which is attached to the body. Because the task of the tactician is much more
varied and because in general the tactician can use his/her hands to operate
the device, we opted for letting the user decide what screen to display when. In
fact, the start-assistance features are relevant to the tactician before the start,
but during all the time the tactician might need to repeatedly check wind and
current conditions, as well as to assess the starting situation.

In terms of the theories and notions related with “context” that were men-
tioned in § 2.2, we approached context awareness as a positivist theory, by
aggressively restricting the range of human activities to be supported. In Nep-
tune we opted for a very careful selection of what to display based on very
carefully designed decision rules. Inaccurate displayed information or irrelevant
screen navigation choices that are automatically made could completely void the
value that the crew associates to the system. One consequence is that context
awareness is determined on the basis of data of the boat and of the environment,
rather than assumptions on what task the user is performing.

Neptune can be seen as an example of distributed cognition system. Some of
its features can be thought as “cognitive protheses” aimed at enhancing the crew
capabilities, and the boat cockpit with its instances of running Neptune form a
single cognitive system. In this case it is the entire crew, rather than a single

7

individual, who is part of this system. In fact, context awareness is determined
on the basis of relevance of data that is not specific to a single individual. In
Neptune, context is related to physical and time data, only; no data related to
the user or the computing infrastructure are used.

In terms of the classification of system behavior suggested in [AAC16] we
adopted the stance that active execution is performed by the system, and no
configuration is done, neither by the user nor automatically.

2.4 Development Approach

During the project, we observed that while there are many data that can be
potentially relevant, it is difficult to understand which ones are critical in which
situation. Interviewing crew members and asking opinions or doing user testing
on low-fidelity prototypes [RC08] was not deemed to be sufficiently effective.
Testing a live prototype with real data and possibly on board, by observing real
users that use the prototype was thought to be a more effective strategy.

Therefore we opted for a Lean UX approach [Got13]. Lean UX design is “a
mindset, culture, and a process that embraces Lean-Agile methods. It imple-
ments functionality in minimum viable increments and determines success by
measuring results against a benefit hypothesis”. In particular, emphasis was
put on the expected outcomes of design choices we made on Neptune, on how
users actually took advantage of the features and what are the benefits that
derive from them.

Lean UX can be seen as a way to combine agile development (which rests
upon an iterative and incremental process that yields high quality software incre-
ments - see the agile manifesto3), lean software development with user-centered
design. User-centered design4 is an approach to design and development of an
interactive system based on an explicit understanding of users and their needs,
and their involvement in all the development phases; the process is driven by
usability evaluations, and it relies on iterative building of prototypes that are
empirically evaluated to gather insights that let improve the solutions.

During the course of the project, which lasted for about 12 months, several
iterations were executed, each resulting with a new prototype being built. Ini-
tially, prototypes were static sketches that were evaluated during informal user
testing sessions (using the “Wizard of Oz” technique). Later on, executable
versions of Neptune were developed that were first usability tested in the lab
with pre-recorded real data, and then tested on board during sailing training
sessions. Some of the prototypes were used also during actual races.

3Agile Manifesto: https://www.agilealliance.org/agile101/the-agile-manifesto and
[Coh10].

4see https://www.iso.org/standard/52075.html.

8

3 User-level Requirements and Examples

Requirements for Neptune were formulated mostly as “user stories”, in the
commonly used template “As a 〈user〉 I need to 〈activity〉 so that 〈benefit〉”,
and in such a way to minimize their mutual dependencies and to emphasize the
value that they can bring once they are deployed. Some user stories bring value
to the sailing crew, other stories are valuable because that help understanding
better the problem or the technologies that are used. Most of the user stories
were also associated to acceptance criteria, that is conditions that can be tested
and used to determine if the user story is completed.

Some of the focal user stories follow:

• As a crew member, I need to continuously read the data about wind and
boat speed and direction so that I can react quickly to changes in the
environment. Data need to be refreshed at 1Hz.

• As a helmsman, I can monitor the target data for the current point of sail
so that I can react quickly to improve boat performance as the conditions
change. Target data depend on the actual point of sail, and include error
of the True Wind Angle and error of the Velocity Made Good (error is
defined as the current− target).

• As a trimmer, I can monitor the target data of the boat for the current
point of sail so that I can decide that a correction is needed in how sails
are trimmed, rather than in how the boat is steered.

See Figure 2. The screen on the left can be used by the helmsman to correct
steering by understanding that a wider angle to the wind needs to be held in
order to reduce the boat speed error. The arrows in the foreground are visual
cues that reduce the cognitive load of the helmsman, telling him or her directly
what action to take, i.e. steer left or right. If the angle error is below 4 degrees
then no arrows are shown as it can be impossible to reduce such an error in
some sea and wind conditions.

The same data can be used by the sail trimmer to understand that the error
in boat speed can be reduced also by better handling of sails. If the helmsman
keeps the error of the wind angle under control, then it is the job of the sail
trimmers to improve the boat performance.

The dynamics when sailing downwind is similar (central screenshot): the
only change is related to the condition triggering the foreground arrows. The
situation changes with wind-abeam, where the notion of target speed changes.
Rather than being defined as the maximum speed at which the boat can reach a
buoy that is perfectly upwind or downwind, with a cross wind the target speed
is defined as the maximum speed along the chosen course. As shown in Figure 2
(right), the target data now displayed include only the error in boat speed and
wind conditions. No changes in steering are needed to reduce such an error,
whereas better sail trimming might be needed.

9

Figure 2: (Left) Screenshot of the upwind target screen, that shows the error
of the boat speed (too slow by 2.18 kt), the error of the True Wind Angle (4
Deg too close to the wind), the actual speed and angle of the True Wind. The
foreground arrows suggest the helmsman to steer to the left, away from the
wind. (Center) Same data, but when sailing downwind. (Right) Screenshot of
the wind-abeam target screen, that shows the error of the boat speed (too slow
by 0.33 kt) along the current course, not in the direction of the wind as before.

In order to reduce human interaction, Neptune is capable of detecting changes
in the points of sail and switching mode as needed.

Other user stories are concerned with the starting phase:

• As a tactician, I can get fixes for both ends of the starting line in order to
plan the start.

• As a tactician, I can get more than one fix for each point in order to
average out small fixing errors.

• As a tactician, I can get a bearing of the line direction, in case I cannot
manage to have the fixes for the endpoints.

• As a tactician, I need to visualize which is the favored starting end if the
line is not orthogonal to the wind. I need also to estimate what is the
quantitative gain.

• As a helmsman or as a tactician, I need to estimate how far is the starting
line, as distance and as sailing time, so that I can decide if I need to change
boat speed and course.

• As a crew member, I need to see if the boat is over the line so that I can
move away from there or check that all the data are correct.

• As a crew member, I can replay the start data during a debriefing session
to learn what we should have done during the start.

10

Figure 3: (Left) Screenshot of start assistance screen, that shows that there are
3 fixes for the left end of the starting line, two for the right end, that the wind
is tilted 5 degrees to the right with respect to the normal of the starting line.
This creates a strategic advantage for competitors starting close to the right
end, who gain 24.7m. The current shortest distance to the starting line is 40m,
and in 40s by sailing at the target speed the boat will cross the starting line,
i.e. 16s ahead of time. (Right) Similar data as before, but here the boat has
already crossed the starting line by 20m just 7s before the start.

Figure 3 shows the screen to be used at starts, with data concerning the
starting line (position of end points, length, direction), the boat (distance to
each of the end points, time needed to reach each end point, distance from the
starting line, gains, if the boat is beyond the line) and the timings (countdown
in seconds, projected time to reach the line).

The screenshot on the right shows that the bottom part is highlighted and
blinks to emphasize that the boat is on course side too early, and this may lead
to penalties.

Neptune automatically changes mode of the start assistance screen depend-
ing on boat position and timing. It also automatically switches from the start
assistance to the target screen after 15 seconds since the boat crossed the start
time after the start.

Other user stories capture needs that are specific to the tactician:

• As a tactician, I need to monitor trends in speed and direction of the wind
in the last several hours in order to predict if the wind is oscillating or
rotating, and increasing or decreasing in speed. I need new data every
minute.

• As a tactician, I need to know how long it will take since the next update
of the trend, in order to avoid staring continuously at the screen.

• As a tactician, I can rely on the system to continue collecting data about
the wind even if I switch to other screens.

11

• As a tactician, I scroll back to previous data and jump directly to the
most recent data, without spending time operating on the user interface.

• As a crew member, I can replay today’s wind changes during a debriefing
session to learn what we should have done during the race.

• As a tactician, I need to estimate the direction and strength of marine
current in order to decide when to tack to reach a buoy or cross a com-
petitor.

• As a tactician, I need to estimate the direction and strength of marine
current in order to plan a better start and avoid sailing beyond the laylines.

Wind changes and marine currents are major factors considered by a sail
race strategy. Figure 4 shows a screenshot of the wind-graph screen that shows
how wind data is collected (and averaged) every minute and used to display in a
visually salient way the changes in wind direction. Data is continuously drawn
on the grid, the viewport is automatically scrolled horizontally to include the
most recent data, the user can scroll the data up and down, and can zoom-in/out
the data in order to get a general overview.

Figure 5 shows the screen that presents estimates of current and leeway. Such
a data is computed by comparing the magnetic heading and boat speed over
water with the last set of GPS fixes, and therefore estimating the cumulative
effect of marine currents and the boat leeway. At the moment, Neptune does
not use inertial measurement units, which could be exploited to separate the
leeway effect from the current. This requires accurate models of leeway for a
specific boat, under different points of sailing, different speeds, different wind
and sea conditions.

3.1 Testing

Testing a system that is normally used in races is challenging, because the
normal usage situation is not suitable for testers (they are not part of the crew,
the crew has no time to participate in testing, malfunctions of the tools would
jeopardize trust). And yet, especially for usability aspects, testing the UI in
such situations is the most effective way to improve it.

Another challenge is that sometimes testing a feature requires sensors pro-
ducing certain kinds of data that are difficult to replicate in the lab, from scratch.
This is the case of computations of current and leeway information. Sailing con-
ditions that differ because of varying wind speed and direction, boat speed over
water, waves, boat magnetic heading, beat heeling angle, boat pitch motion
affect measurements and calculations. Therefore, this kind of testing can only
be performed with accuracy during navigation.

For this reason we opted for a multi-strategy testing approach.

• The programmer developing a feature would implement and run unit tests.

12

Figure 4: Screenshot of the wind graph screen that shows the trend in wind
changes, sampled every minute. The two left-most columns show the time and
wind speed, and the corresponding cells of the table show the wind angle. In
the last 11 minutes the wind has rotated counter-clockwise by 35 degrees and
increased from 3.3 to 6.1kt. The next update will occur in 43 seconds.

Figure 5: Screenshot of the current and leeway screen, that shows the speed
and direction of the combined action of the marine current and lateral push of
the wind. At the moment it is estimated to be 0.24kt 15 degrees to the right.

13

• When a user story would complete then its acceptance criteria are used to
perform exploratory testing using canned data, configured specifically for
that user story. For example, acceptance criteria for the user story that
deals with estimating which is the favorite end of the starting line include:

– If fixes for both ends of the line are available, then the gain (in meters)
is updated every second in the UI, close to the favored end.

– If only one end was fixed, or none, but a bearing is available, then
the gain (in percentage) is updated every second in the UI, close to
the favored end.

• Exploratory testing is carried out also using data that was recorded during
prior training sessions or races. This is done within the lab. All the context
aware features of the system were tested in this way.

• Some usability tests with crew members are carried out in the lab using
pre-recorded data.

• Other functional tests are carried out during training sessions. This was
the case especially for the current and leeway screen, subject to specific
weather and sea conditions.

• Finally, other usability tests were run during training sessions. These were
invaluable to collect feedback from crew members. Such a feedback ranged
from issues with icons or numbers that were difficult to understand or use,
to new ideas about features to include or new calculations to perform,
to understanding what kinds of context awareness could be implemented
to achieve what effect. For example, switching from upwind/downwind
targets to VPP targets was the result of a brief brainstorming session held
during a training session.

• During races only minimal feedback was collected, based on written notes
that some crew members (2 of the authors) brought back on shore at the
end of the race and later discussed with developers. As mentioned in the
Introduction, the application was used during club sailing races and more
important championships (namely, the 2017 Italian Offshore Sail Race and
the 2017 ORC Worlds Trieste), by different crews.

During test sessions with actual crew members, several opportunities for
improvement were brought to light. For example, it was discovered that the
level of flickering of initial implementations of the current and leeway screens
were intolerable, and reduced usability of the screen. Thus a refactoring took
place, assuming a constant heading of the boat and the vector of the polar angle
of the current and leeway slowly rotating as needed.

Other examples of collected feedback are related to the wind trend screen;
a tactician suggested that there should be two modes of operation, one used for
on-board use and one for debriefings. The UI for racing should include fewer

14

buttons and features. Notice that this would be another context-aware feature,
dependent on the user task.

During testing of the starting screen, errors in fixes were detected of the
order of 1-3 meters. Initially they were thought to be due to the use of planar
spatial coordinates instead of coordinates related to the earth surface. Later on
it was discovered that these errors were due to latency of the GPS sensors and
the 1Hz refresh rate of the UI. Other suggestions included displaying the time
needed to reach the starting line, not just its distance.

Some of these suggestions will be included in the next version of Neptune.

4 System Architecture: the Big Picture

Presentation Layer (HTML, CSS, JavaScript)

Communication Layer
(HTTP, TCP/IP WebSocket)

Ne
pt

un
e

on
 C

lie
nt

 D
ev

ic
e

(e
.g

.,
Ki

nd
le

)

Apache (PHP) Argos

RaspOS

Serial Port
Driver

Ne
tw

or
k

Da
em

on

Wi-Fi
Driver

USB Bus

USB
Port #0

USB
Port #1

USB
Port #N…

Boat Bus and Physical Sensors (GPS, IMU, NKE,
speedometer, anemometer etc.)

…

W
i-F

i
An

te
nn

a

Se
rv

er
 D

ev
ic

e
(R

as
pb

er
ry

 P
i 3

)

So
ftw

ar
e

Ha
rd

w
ar

e

Bo
at

Figure 6: An overall look at the system architecture.

If we look at the hardware infrastructure of our system (see Fig. 6), at the
lowest level we have the sensors, the communication bus, and some electrical
units which are rather common in sailing boats. Then, the core element of
Oceanus is a Raspberry Pi 3 (model B+), which allows us to:

15

1. harvest raw data from sensors (connected through USB ports);

2. compute meaningful and useful information from raw data;

3. use the computed information to coordinate context-awareness through
the generation and handling of events;

4. provide a WiFi local area network (LAN);

5. publish the computed information and the related events through a socket
service and a web application in the LAN.

Finally, e-ink devices (like, e.g., Amazon Kindle) are used by the crew to access
the relevant information during the normal on-board activity.

From the software point of view, the whole system has a multi-tiered archi-
tecture, in order to make it robust, easy to maintain, and extensible. Immedi-
ately above the bus and the sensors there is the server component of Oceanus.
Its first software layer is constituted by the operating system of the Raspberry
Pi 3 (RaspOS). It provides the drivers to manage USB ports and the WiFi
antenna, and the network daemon to manage connections with clients and to
establish the wireless LAN. Then, we have the Argos process which (i) reads
data in real-time, and stores them in log files; (ii) computes secondary data from
raw data and keeps them in a suitable structure in main memory; (iii) applies
contex-aware rules to computed data to infer new events; (iv) sends such in-
formation to subscribers (clients) via a publish/subscribe service. At this level,
another important process is the local Apache web server which provides the
dynamic pages of the web interface to client devices.

Finally, the client layer consists of the Neptune web application. It is orga-
nized in two modules, namely, (i) the communication layer (i.e., responsible for
the communication with the Argos and Apache processes) and (ii) the presen-
tation layer (i.e., the graphical UI driven by the events published through the
Argos service).

5 Technological Issues and Limits

In small (≤ 40 ft) leisure yachts, the management of energy on board is always a
critical issue and constrains the use of different electrical and electronic devices
especially during a long (≥ 200 M) sail navigation. A typical installation relies
on three 12 V lead batteries of about 80 Ah each; one is exclusively dedicated to
the engine start and one to the auto pilot mechanical actuator and its governing
computer. Thus, only one battery supplies services, like navigation lights, cabin
lights, electronic instrumentation and bus, water pumps, refrigerator.

Therefore it is crucial to minimize energy consumption and throughout the
whole project development, many hardware related choices were affected by
such limitations of the electric power supply available on the boat. A typical
example is the selection of the Raspberry Pi 3 as the low-power central unit of

16

our architecture. In case of need an external 5 V power bank serves as a backup
power supply for the Raspberry.

Moreover, in order to exploit the hardware as much as possible without intro-
ducing too many latencies, we favored runtime speed and memory optimization
against development ease, writing all the code of Argos (see Section 7) in C,
avoiding interpreted and object-oriented languages like Python and Java.

Since the communication between the Raspberry Pi 3 and other visualization
devices occurs via WiFi (typically on channel 6 at 2.4 GHz), we had to care-
fully evaluate the electromagnetic compatibility between such computer and the
existing electronic devices, particularly the electronic compass. Moreover, also
local external radiated disturbances must be monitored in order to avoid loss
of communication. As an example, in the gulf of Trieste, where we performed
the experiments, a radiated disturbance exactly at the channel 6 of the WiFi is
present; the solution was to switch to a different WiFi channel the Raspberry
Pi 3.

6 Sensors and Buses

Figure 7: Nke TOPLINE bus used to interconnect on board sensors from a
standard factory installation.

Most the sailing boats are equipped by the manufacturer with a standard
instrumentation pack from a specific brand (e. g. B&G, Garmin, Nke, Rayma-

17

rine are instances of widely used commercial brands); according to the brand,
data from different sensors of the same manufacturer dialogue each other via a
proprietary bus. As an example, Nke interconnects its sensors, actuators, mul-
tifunction displays and the processing unit, named “Gyropilot calculator”, by
means of the so called TOPLINE bus, Fig. 7.

The graphic display is the user interface of this instrumentation; it allows
the user to control the autopilot and adjust the settings of the sensors. The Gy-
ropilot calculator is the controller of the autopilot; together with the hydraulic
unit and the electric unit, it controls and actuates the boat’s rudder on the base
of a prescribed control variable such as course or wind direction.

Depending on the level of equipment a typical installation consists of: a flux-
gate compass used to specify the Magnetic Heading (MH) of the longitudinal
boat axis with respect to the magnetic North, a speedometer sensing the Speed
Over Water (SOW) along the longitudinal boat axis based on a paddle-wheel, a
rudder angle sensor, a gyro sensor (integrated in the calculator), a wind station
on the top of the mast, sensing amplitude of the wind, Apparent Wind Speed
(AWS), and its direction with respect to the longitudinal boat axis, Apparent
Wind Angle, (AWA). Moreover, depth below the keel, air and water tempera-
ture, voltage and power consumption, are measurements available on the bus.
We will denote such quantities as primary quantities since they are directly
measured by a dedicated sensor.

From a subset of primary quantities, a number of secondary quantities are
usually computed and are available on the bus together with the primary ones.
As an example, from the triple {SOW, AWS, AWA} the so called True Wind
Speed (TWS) sensed by an observer fixed with respect to the water surface is
computed. Similarly for the corresponding True Wind Angle (TWA) with re-
spect to the longitudinal boat axis; both are secondary quantities. In addition,
from the pair {MH, TWA}, the Magnetic Wind Direction (MWD) is computed
with respect to the magnetic North. In the case of Nke installations, the Gyropi-
lot calculator performs such computations as a black box, making the quantities
{TWS, TWA, MWD} available on the TOPLINE bus.

Such installation represents a closed hardware and software infrastructure;
thus the input/output interaction with other devices or sensors is provided by
a dedicated input/output interface which allows the bidirectional conversion
of the data present on proprietary bus to a public data bus. The NMEA 0183
open standard is a specification for communication between items of marine and
GPS equipments. It is defined and controlled by the National Marine Electronics
Association [nme18]. The 0183 standard uses a simple serial protocol to transmit
a sentence to one or more listening units. A NMEA frame uses every ASCII
character. As an example, the Nke interface dialogues through the NMEA 0183
V2.30 standard, yielding sentences like

Listing 1: Example NMEA sentence

$IIVWR ,053. ,L,04.5 ,N,02.3 ,M,008.3 ,K*6A,

where $IIV WR is the label specifying computed true wind data, TWA=53 Deg
to the left side of the longitudinal axis (label L), TWS=2.3 knots (label N) or

18

equivalently TWS=8.3 m/s (label M) according to the unit. The format of
frames is: 4800 baud rate, 8 bits with bit 7 at 0 / 1 start bit and 1 stop bit,
with checksum. The frames are continuously transmitted in an asynchronous
way and every frame is transmitted during each cycle.

The NMEA interface allows the conversion of the data present on the pro-
prietary bus onto the NMEA data bus, so as to allow the interfacing between
the proprietary network of devices and external devices from a different manu-
facturer.

A typical external device, interfaced with the closed hardware and software
infrastructure, is a GPS; it provides as output in NMEA 0183 format at least the
latitude, longitude, Speed Over Ground (SOG), Course Over Ground (COG),
time and date; in the case of a cartographic GPS, way points setting and the
corresponding cross track distance and course are sent in addition.

6.1 Raspberry Pi 3

The rationale of the Oceanus project is to set up an independent acquisition unit,
with in house developed software, capable to record and process primary and
secondary quantities generated not only from the existent closed infrastructure
but also from a number of different independent devices.

To this purpose, we used an RS232 serial port to interface the closed infras-
tructure to a Raspberry Pi 3 computer. In addition, we considered an Inertial
Motion Unit (IMU) and an Automatic Identification System (AIS) unit.

The IMU is equipped with a 3-axis accelerometer, magnetometer (compass)
and gyroscope and works as a USB inertial measurement unit. It can measure 9
degrees of freedom and computes quaternions, linear acceleration, gravity vector
as well as independent heading, roll and pitch angles. It is a complete attitude
and heading reference system.

The class B AIS transponder allows exchange of AIS messages with other
AIS equipped vessels within VHF range, the essential way to improve collision
avoidance on the water; it is designed to provide NMEA 0183 data via a wa-
terproof USB port enabling a simple integration with the Raspberry Pi 3; for
safety reason it is equipped with a dedicated GPS unit.

6.1.1 Timing

Since we deliberately avoid the use of local clocks, the absolute date and time
is provided by a further GPS unit; it is connected to the Raspberry Pi 3 as an
external device, yielding, every second, a NMEA sentence at 9600 baud rate.

Listing 2: Example NMEA sentence

$GNRMC ,163221.000 ,A ,4604.8468 ,N ,01316.0955 ,E

,4.73 ,233.38 ,281017 , , ,A*7C,

Listing 2 shows an example, where 163221.000 encodes the UTC time instant in
the format HHMMSS, latitude 4604.8468 North and longitude 01316.0955 East

19

in sexagesimal degrees, SOG 4.73 in knots and COG 233.38 in Deg, date 281017
in the format DDMMYY.

In between a pair of successive GPS sentences like Listing 2 a number of
NMEA sentences are acquired and processed; all data encoded in such sentences
are attributed to the time instant encoded in the preceding GPS sentence; thus
a time jitter up to 1 sec affects such data.

7 Argos: Harvesting Data in Real Time

The first software layer of our system above the OS is named Argos5 and it is
responsible for harvesting the raw data produced by sensors and fed to the USB
ports of the Raspberry Pi 3. Indeed, as we saw in § 6, all the sensors ultimately
provide a stream of NMEA 0183 sentences over a serial communication inter-
face. The only differences are in the baud rate of the different kinds of devices.
However, as we will see in detail in § 7.1, a multithreaded solution suffices to
read the data concurrently, in real-time, and in a lossless way (see Figure 8).

7.1 Reading Data Safely and Efficiently

In order to cope with the different features (e.g. speed, parity and stop bits
etc.) of the devices attached to the USB ports, the main execution thread can
read the configuration of the devices either from command line options or from a
configuration file in YAML6 format. Then, it spawns a dedicated reading thread
for each detected serial device (in Fig. 8 they are represented by Reading Thread
#0, Reading Thread #1, . . .): to keep with our metaphor about the giant Argos,
these threads are called Argos’ Eyes, since they represent the capability of the
system to acquire data from the environment.

Raw data consist of lines of text in NMEA 0183 format; hence, each Eye
stores such lines in a queue (for logging purposes as we will see later on in
this section) and it uses a very simple parser to extract the single data fields
contained in those lines. Such fields are manipulated by a computation library
which provides several functions allowing the system to synthesize more struc-
tured and meaningful information for the crew (see § 7.2). This information is
stored (and continuously updated as sensors provide new raw data) in a suit-
able structure in main memory shared among all threads. Since each Eye can
compute new information and update the shared structure, the latter must be
protected from simultaneous accesses, otherwise it might become corrupted. For
such purpose we use a mutex, paying attention to avoid deadlocks, of course.

As we anticipated before in this section, the NMEA 0183 lines are logged
in the filesystem of the Raspberry Pi 3. In order to avoid an excessive load for
the SD card, we do not keep open the log files during all the lifetime of the

5The name refers to Argos (a.k.a. Argus Panoptes), i.e., the all-seeing primordial giant of
the Greek mythology.

6YAML stands for YAML Ain’t a Markup Language and it is essentially a human readable
data serialization language. See the official website for further details: http://yaml.org/.

20

USB1USB0 USB2 …

Reading
Thread

#0

Reading
Thread

#1

Reading
Thread

#2
…

Main Thread

Context
Aware

Module
(CAM)

Double
Buffered
Queue

Data Structure
for

Current Sailing
Information

NMEA0183 lines

Processed
Data

Argos’ Eyes

Reading Queue

Emptying Queue

——
——
——

——
——
——

——
——
——

Log Files

Logging
Thread

(every 30 s)

C
ur

re
nt

Sa

ili
ng

In

fo

Computation
Library

Raw Data
Fields

Command

Sailing Data

JSON
Artifact

JSON
Artifact

Function name & Args

———
———
———
———
———
———

Command line options

Simulation
Thread

(for offline
simulations

from existing
log files)

OR

RPC
Service
Thread

 Result Result

JSON
Artifact

R
es

ul
t

YAML
Configuration

File

Function nam
e &

 A
rgum

ents

Configuration

In
te

rp
re

te
d

Sa
ili

ng
 In

fo

+
Ev

en
ts

Publishing
Service
Thread

Sailing Data JSON
Artifact to

 s
ub

sc
rib

er
s

(p
us

h
m

od
e)

in
co

m
in

g
co

nn
ec

tio
ns

(p
ul

l m
od

e)

Figure 8: Argos architecture.

Argos process. Instead, we schedule a suitable logging thread (see Fig. 8) to
intervene every 30 seconds (but the user can change this time interval modifying
the configuration file) saving the current queue to the filesystem and emptying it
for subsequent use by the Eye threads. Of course, this is another crucial process
since saving the queue to disk and emptying it should neither interfere nor slow
down the reading threads. Hence, we opted for a double buffered queue, where:
(i) one buffer contains the current queue of NMEA 0183 lines and the second
buffer stays empty; (ii) when the logging thread must save it to disk, the buffers
are switched: the one full of lines is given to the logging thread, while the empty
one is assigned to the reading threads. Thus, the logging and reading threads
are not affected by the relative execution speeds. Of course, the act of switching
the buffers must be atomic: such constraint is granted by the use of another
mutex.

We conclude this section illustrating another interesting feature of Argos.
Indeed, in the diagram of Fig. 8 we see that, instead of spawning the classic

21

reading threads, the system can instantiate a “Simulation Eye”, namely, a read-
ing thread acquiring NMEA 0183 data lines from existing log files instead of
USB ports. By doing so, we can use Argos to review and analyze sailing data
off-line (i.e., after a race), possibly interfacing our software with numerical data
analysis tools or with machine learning algorithms.

7.2 Computing Data

As we saw in § 7.1, the acquisition system on the Raspberry Pi 3 consists of a C
program capable to access in real time the serial ports connected to it, recording
on dedicated log files a user-selected subset of NMEA sentences to be used for
the off-line a posteriori analysis. Moreover, the selected NMEA sentences are
processed in real time on the basis of the initial label and they are tokenized
into fields.

Thanks to the developed acquisition system, primary quantities are ex-
tracted and conditioned as functions of time; moreover, they are combined in
order to produce new secondary quantities, independent from those already
computed by the closed infrastructure.

7.2.1 True wind computation

From the triple { (Vl, Vt), AWS, AWA} we generate the new pair {TWSV ,
TWAV }, where the pair (Vl, Vt) represents the longitudinal and transversal
components, respectively, of SOW7 or SOG according to the case; the advantage
is that true wind data can be computed also in the case SOW is not available due
to a malfunctioning of the sensor in contact with water. Of course a different
notion of true wind is computed in this case (true wind with respect to the
ground), which cannot be used for target speeds of the boat. From elementary
geometry, we obtain

u = AWS cos(AWA
π

180
)− Vl, v = AWS sin(AWA

π

180
)− Vt (1)

TWSV =
√
u2 + v2, TWAV =

180

π
atan2(v, u). (2)

By adding to the TWA signal the magnetic heading MH, with modulo 360,
the Magnetic Wind Direction (MWD) which refers to the magnetic North con
be deduced.

7.2.2 Geodetics computation

We considered standard approximate geodetics formulas on the local tangent
plane at the actual latitude, [top18, Kar13]; calculations on the basis of a spher-
ical earth (ignoring ellipsoidal effects) are accurate enough for our purposes.

7In the case of SOW, Vt = 0 holds, because the boat speed sensor is aligned with the
longitudinal axis of the boat.

22

In order to plot the trace on the local tangent plane from actual values of
latitude LAT and longitude LON in sexadecimal degrees, we performed the
Mercatore conformal projection

x = RLON
π

180
, y = R log(tanπ(0.25 +

LAT

360
)), (3)

where x, y are the resulting Cartesian coordinates in meters referred to an origin
located at the intersection between the Greenwich meridian and the equator; R
is the local earth radius. As an example, in Fig. 9 the trajectory of a typical
jibe is drawn with green circles on a local plane; the TWS and TWA are also
represented with arrows. Moreover, a label shows in the selected point (the
small square) the time instant in seconds, COG and SOG, SOW, MH, AWA,
TWS; finally the roll (ROL) and pitch (PIT) signals from IMU are also shown.

1.466 1.4661 1.4662 1.4663 1.4664 1.4665 1.4666 1.4667

x 10
6

5.7221

5.7222

5.7223

5.7224

5.7225

5.7226

x 10
6

T ime: 11.6811
C OG : 301.81
S OW: 6.29
S OG : 6.45

R OL: -21.38
P IT : 2.44
MH: 308
AWA: 32
T S : 0.45369
T A: -6.45
T V P : -1.169
R WS : 14.6

è[m]

[m]

Figure 9: A trajectory of a boat during a jibe on the local plane (the boat is
moving downward, with a Northerly wind); North is up. Green circles represent
boat positions, and blue arrows represent wind direction.

7.2.3 Target data

On the basis of the actual geometry of the sails, of the boat and of a model of the
geometry of the hull, a software program known as Velocity Prediction Program

23

(VPP) of the Offshore Racing Congress [orc18], computes the best velocity and
true wind angle (they are often referred to as Target Speed and Target Angle
respectively) the boat should have at a specified true wind speed whose value
in knots belongs to the canonical set {6, 8, 10, 12, 14, 16, 20}. As an example
for the Uniud Sailing Lab boat, the simulated best true wind angles in Deg
during upwind navigation are {42.4, 40.9, 40.0, 38.4, 38.0, 37.9, 37.6}. These
numbers represent the polar curves of the boat. Argos performs in real time the
comparison between the actual SOW and TWA with the simulated best velocity
and best true wind angle during upwind or downwind navigation, showing the
discrepancy from interpolated target values. In Fig. 9 such a discrepancy is
denoted with TA for the angle and with TS for the speed; a negative value
indicates an underperforming boat.

7.3 Publishing Interpreted Data and Events

The data structure representing the current sailing information in Fig. 8 is
continuously kept up to date by the system through the use of the computation
library. Then, such data structure is used by the Context-Aware Module (CAM,
see Fig. 8) to interpret the current situation. For instance, from the data values
of TWA=38, SOW=5.6, and MH=225, CAM will infer the interpretations “port-
tack” and “close-hauled”. Those interpreted data are then routed to subscribers
(in our case the Neptune web application) by the Publishing Service Thread in
JSON format (see Fig. 10 for an example related to this case). Furthermore,
CAM will generate events like “tacking” which will be added to the interpreted
data and sent by the Publishing Service Thread to the registered clients (again,
Neptune in our case). Correspondingly, if Neptune is showing the targets screen
and it knows to be in the state of “port-tack”, then, at the moment of receiving
the event of “tacking”, it will change the screen accordingly to begin monitoring
the maneuver.

{

"twa" : 38,

"sog" : 5.6,

"mh" : 225,

...

"mode" : "live_race",

"intepretations" : ["port -tack", "close -hauled"],

"events" : [" tacking "]

}

Figure 10: A sample of sailing information published in JSON format: dots
(...) represent omitted (non-relevant) data.

In order to ensure that the system is also able to respond to pull requests,
we implemented a simple Remote Procedure Call (RPC) mechanism. Indeed,

24

thanks to the latter, computation tasks can also be requested to Argos from
external software through a JSON artifact sent to a dedicated RPC Command
Thread (look at the upper right part of Fig. 8). Such artifact plays the role
of a remote procedure call, specifying both the name of the function to invoke
and the related arguments: once it has been received, a dedicated thread will
execute the function call and send back the result of the computation to the
remote caller, always in JSON format.

As an example, we added the possibility for ask Argos to compute the max-
imum speed towards each of two possible destinations (conventionally called s,
the starboard end of the starting line, and p, the port end of the line), given
as input arguments the current true wind speed (tws) and the true wind angles
with respect to the given destinations (resp. twas and twap) in JSON format
as follows

{ "cmd": "polar", "tws": "9.7" , "twap": "124.0" ,

"twas": " -72.0" }

The results (resp. speedp and speeds) are computed in real time and returned
to the caller in JSON format:

{ "speedp ": "7.273267" , "speeds ": "7.167200"}

This kind of requests is very useful before the start of a race, in order to help the
crew to avoid crossing the starting line (between the buoy and the committee
boat) before the official start time. Requests of this kind can be performed in
several ways, e.g., through a PHP dynamic page, which is the case of Neptune.

8 Related Work

In this section we highlight a selection of commercial software solutions cur-
rently available on the market for supporting racing crews. In the last decade,
smartphones and tablets have become accessible to a large spectrum of users, so
this kind of applications is no longer intended just to a narrow group of profes-
sionals, but can be adopted by amateurs as well. Here we analyze the following
three applications, by focusing on their main functionalities, describing their
pros and cons, and key differences with Neptune:

1. iRegatta (by Zifigo)

2. Esa Regatta (by ASTRA Yacht)

3. SailRacer (by UAB SailRacer)

8.1 iRegatta

Available on iOS and Android platforms and developed by the danish company
Zifigo, iRegatta has been on the market since 2009. It is an application intended
for both racing and cruise navigation and it comes with a rich set of different
features.

25

The customizable Race view allows the crew to monitor up to a maximum
of four different readouts at the same time. Moreover, it provides the crew with
a horizontal performance bar, based on a percentage value, which is obtained
by comparing the current boat speed to the polar predicted one. This value can
be actually higher than 100%, when the boat beats the predicted speed. The
screen shows, at the bottom, speed and VMG history graphs.

The Course view can be accessed by sliding down from the Navigation View.
It provides the tactician with a sketch of a course with three buoys and a start-
ing/finishing line. A buoy location can be saved by approaching the waypoint
and tapping the related button.

The Layline view provides information about the current point of sail, true
wind direction and target true wind angle, along with a graphical view of the
boat and the current waypoint laylines. The Start view allows the tactician
to ping the starting buoy and vessel positions, retrieve distance/time to line
information in real time, and check the count down to race start. Moreover, it
provides him with a graphical view of the boat and its dead zone, along with
the starting line and laylines. The burn-or-gain bar is visible on the left, a
component that indicates whether the boat needs to speed up or slow down, in
order to reach the starting line on time. Once the boat crosses the starting line,
the Race view is automatically activated.

Several extra views depend on availability of specific NMEA sensors, such
as sonar, radar or thermometer. Other features allow users to record navigation
data for further external analysis, view polar diagrams and import/export polar
data through CSV files.

8.2 Esa Regatta

Developed by the Italian company ASTRA Yacht Srl, Esa Regatta is currently
available on iOS platform only.

As far as the Navigation view is concerned, this solution shares several com-
mon aspects with other apps, such as the ability to view a list of up to four
different quantities, which can be customized by tapping the related buttons in
the two side columns. Moreover, it also provides a performance bar, as previ-
ously seen on iRegatta.

An interesting feature of this app is its ability to automatically update target
data and polars through patented algorithms. Smart polar mode can be enabled
by pressing the ESA polar button on the bottom. Moreover, ESA polar data
can be exported and analyzed by Esa Data & Polar Analyzer, a professional
desktop application developed by the same company.

The Start screen does not provide a vector view of the boat and the starting
line, as seen in iRegatta. Instead, the UI shows a static graphical representation
of the line, along with an arrow indicating how wind direction relates to it.
Other numeric values describe wind status, distances and times to line and its
ends. Favored end and related gain are indicated bottom right. A count down
indicator is visible on the left.

26

8.3 SailRacer

SailRacer has entered the market in 2013 and is currently available on both iOS
and Android platforms. It offers most of the main features previously mentioned
about the other apps, plus some extra add-on, such as the option to view the
UI on a dedicated remote device.

The Navigation screen allows the helmsman to follow the route to one or
more waypoints by monitoring a compass-like widget, which highlights the dif-
ference between current TWA and its target value. A polar curve diagram,
related to current wind speed, is integrated in the widget itself. A percentage
indicates the boat performance, as described in other solutions. In the right col-
umn, numeric values refer to TWA, heading and distance/time to layline and
current waypoint. Next to TWA angle, arrow-shaped indicators help the user
to decide whether to luff or bear-away.

The Start screen partially resembles the Navigation screen, but adds some
important components, such as the count down and time-to-burn indicators, as
previously seen in iRegatta. The compass widget shows the distance between
the boat, the starting line and its ends, which can be marked by tapping the
related side icons. The numeric values in the right column include VMG.

Sailracer app provides the user with the ability to view the UI on an external
device. The company currently offers a modified version of the inkBOOK Classic
2, an Android-based e-book reader with an E Ink display built-in. The device
comes with a waterproof protection and integrates a high-capacity battery, but
has no backlight and cannot be used at night or in poor lighting condition.

8.4 Neptune and third-party applications: a comparison

The three applications just illustrated are examples of standalone applications,
that must be manually installed and updated on each single device. They all
support WiFi or Bluetooth connections to NMEA-compatible data sources. If
no NMEA device is available on board, the user can still retrieve boat position,
speed and direction information through the sensors available on the mobile
device itself.

Oceanus, on the other hand, is based on a client-server architecture, which
allows users to access the latest version of the frontend at any time through
local WiFi network. Users can use Neptune on a Kindle device or any other
mobile device. As for the commercial apps mentioned, extra NMEA sources
can be easily added and accessed to Oceanus as well. Moreover, third-party
apps are designed for smartphone and tablet displays, which generally suffer for
low-readability under strong sunlight. Neptune, instead, is optimized for Kindle
Paperwhite and takes advantage of its E Ink display technology and backlight,
which makes it accessible in any lighting condition. Furthermore, the significant
battery life is also a benefit that should not be ignored. Currently, SailRacer
is one of the few commercial apps that supports a dedicated device with such
peculiarities.

As far as the UI is concerned, Neptune has several aspects in common with

27

the three commercial apps. It shares some specific context-aware feature, such
as luff and bear-away indicators, as seen in SailRacer. Moreover, it detects the
moment when the boat crosses the starting line and provides a visual feedback
about it and switches to another screen. A similar behavior was also noticed in
iRegatta, where this specific event triggers the Race view, instead.

On the other hand, the Targets screen in Neptune is able to switch be-
tween the appropriate readout sets, depending on the current point of sail: it
switches between upwind, downwind and wind abeam presenting and highlight-
ing different data. Neptune also provides a special screen for current and leeway
monitoring. Such feature was not found in the commercial apps, although some
of them do integrate COG and SOG based current calculation into specific
screens, such as iRegatta in its Race map view. Moreover, the Wind screen in
Neptune allows better readability by drawing the graph overlay straight on top
of true wind direction numeric data table, while other solutions generally place
the numbers on the axes and require from the tactician an extra effort to inter-
pret the graph. Furthermore, Neptune’s Start screen is more flexible, compared
to other applications. First of all, it allows the tactician to take multiple fixes
for both the ends of the starting line, to obtain the coordinates of the average
position and manage the two lists of fixes. Besides, it supports partial detection
of the line, by taking the line bearing and fixes for a single end, or just the line
bearing.

8.5 Oceanus vs. Commercial Sailing Instruments Prod-
ucts

For the sake of completeness, in this section we will consider also “complete”
systems, i.e., solutions providing both the low-level communication layers with
the boat hardware (i.e., the role played by Argos in our case) and the user graph-
ical interface (i.e., our Neptune web application). Such solutions are commercial
products which usually operate and are integrated with ad-hoc hardware and
can be expensive.

Worth noting is OS5, a software solution offered by Ockam (http://www.
ockam.com/)8 to racing crews. This highly sophisticated solution includes ad-
vanced screens for many different aspects of a sail race. For example, a particular
screen supports crews with the Wally technique, an advanced way to use the
polar curves of the boat; another screen provides the BET Diagram, supporting
cost/benefit analysis of tacking vs Wallying. Several features are made avail-
able for supporting the starting phase of a race: the DogLeg Start technique
supports the crew by suggesting how to cross the line with a high boat speed;
a technique based on triangulation allows the crew to get the fixes for the line
endpoints without having to pass by; marine current is detected automatically
and included in the calculation.

Compared to Oceanus, the architecture of the system is quite demanding, as
it requires a normal PC to be running on board and connected to a WiFi router.

8Visited in August 2018, but pages were last updated in 2014.

28

The PC runs Ockam’s application within a web server. Users can adopt their
own mobile devices. The UI does not seem to be optimized for high visibility
and no context-aware features seem to be made available. Furthermore it seems
it require crews that are trained to use the system. Energy consumption of OS5
can also be an issue on board of small yachts.

Another system, Triton2 of B&G (https://www.bandg.com/bg/series/
triton/), uses a dedicated display for direct sunlight viewing: its features,
besides a completely customizable displaying of wind, speed, depth, distance to
target, and heading, include advanced functions of autopiloting like SailSteer
which allows, together with a dedicated keypad hardware, to automatically per-
form steering maneuvers, taking into account wind changes, laylines, tide and
current information. However, such wealth comes for a price: the cost of the
central unit of the autopilot computer ranges from 840 USD to 1,499 USD (de-
pending on the particular configuration). Whence, a complete system (with
all the sensors, actuators and displays) can easily reach the price of several
thousands of dollars.

The same applies for other well-known products by other manufacturers
(featuring more or less the same characteristics, including the steering assis-
tant), e.g., the Simrad (https://www.simrad-yachting.com/) AP70 autopi-
lot, whose price for a complete configuration ranges from 3,300 USD to 4,350
USD. Other renowned producers of similar solutions are Garmin with Nexus
Marine Instruments (https://www.garmin.com/uk/nexus), ComNav (http:
//www.comnavmarine.com/), Sailmon (https://sailmon.com/).

Of course, our proposal is not meant to be a competitor of the above men-
tioned solutions. However, it is interesting to see that many professional fea-
tures can indeed be provided in an effective way, even with low cost hardware.
Furthermore, we implemented a context-aware intelligence which proactively
proposes significant information and visual hints to the crew, without requiring
neither an excessive cognitive load nor an intensive interaction with the graph-
ical interface. Such features rarely show up even in very expensive products,
where users have to go through a preliminary customization of the information
shown in the displays, if they do not want to be overwhelmed by too many
details.

Finally, our system is built on top of open source software; hence both the
amateur and the professional sailor can modify and extend it according to their
needs, by interfacing new hardware and providing new features.

9 Conclusion

After several tests and feedback collected from different crews (see § 3.1), we
believe that Oceanus represents an interesting low-cost solution, providing a
simple, yet effective, context-aware navigation aid both for sailing race crews
and for amateur yachtsmen willing to improve their sailing skills.

In addition to extendability, one of the most useful features provided by
our platform is the ability to use multiple clients for different crew members,

29

with different user interfaces according to the different user roles, with different
user devices. For instance, the device being used by the tactician can display
data that differ from those appearing on the helmsman’s device, since they have
different information needs. According to our knowledge, this feature cannot be
found even on much more expensive solutions available in the market.

Figure 11: A screenshot of a web application allowing to analyze ex-post sailing
sessions. The path of the sailing boat is displayed as a gray line: the user can
zoom in and out, he can choose the speed of the movement of the boat (1x, 2x,
5x, 10x), whose current position is represented by a thumbnail with its current
direction (green arrow) and the true (black arrow) and apparent (blue arrow)
wind directions. On the left detailed data (Lat, Lon, Date, Time, COG, SOG,
AWA, AWS, TWA, TWS, MH, SOW) about the current position are displayed.

Moreover, after two years of development and use of Argos, we have a wealth
of log files which, besides being a useful resource for debriefing sessions (in
Fig. 11 there is a screenshot of a web desktop application we developed and
we commonly use to review sailing performance), represent a precious source
of data for machine learning purposes. We plan to apply such techniques in
order to learn a faithful model of the boat which, in turn, could lead to more
accurate and timely navigation aids during races. For instance, we could infer
better polar diagrams and support accurate leeway predictions. These can be
exploited for obtaining accurate estimates of marine current and therefore for
providing corrections to laylines, wind speeds and angles, and boat targets.

Other research openings are concerned with installing appropriate sensors on

30

buoys and making Oceanus capable of detecting them, and deploying Oceanus
on all the boats of a race fleet, and manage therefore a distributed system of
sensors, which will provide a dynamic map of the race field with respect to
boats, winds, sea conditions.

A network of distributed systems of sensors can be used also for other pur-
poses than supporting racing crews. In fact, sensors of chemical properties of the
water (like those measuring salinity) could be easily integrated within Oceanus
and in this way an entire water area could be monitored continuously by a fleet
of leisure yachts. Argos in each of the yacht would collect this information and
when the yacht is docked it would upload the data to the cloud.

Furthermore, the context-aware logic of Neptune will be enriched with new
screens, for example for monitoring tacking performance and for automatically
switching to it. In addition, besides the ability to integrate other sensors, we
plan to work on the Context-Aware Layer of Neptune. Currently it is customized
for a very specific scenario (namely, assisting the crew of a sailing race), but
we are considering to make it more general and easy to replace so that it can
support different kinds of UIs for different scenarios.

In conclusion, the best added value of Oceanus relies on its modularity and
openness to extensions. We believe that it could help in increasing the level of
support that electronic equipments can provide to sailors. In the next months
the software of Oceanus will be published as open source software.

Acknowledgments

We would like to thank the crews of William B for their useful suggestions in
making and fine tuning the system presented in this paper, and the students
who contributed to implement the hardware and software solution.

We also thank the University of Udine for sponsoring this project within the
Uniud Sailing Lab.

References

[AAC16] U. Alegre, J. C. Augusto, and T. Clark. Engineering context-aware
systems and applications: A survey. Journal of Systems and Software,
117:55–83, 2016.

[Coh10] M. Cohn. Succeeding with agile: software development using Scrum.
Pearson Education, 2010.

[Dey01] A.K. Dey. Understanding and using context. Personal and ubiquitous
computing, 5(1):4–7, 2001.

[Dou04] P. Dourish. What we talk about when we talk about context. Personal
and ubiquitous computing, 8(1):19–30, 2004.

31

[FH91] N.V. Flor and E.L. Hutchins. Analysing distributed cognition in soft-
ware teams: A case study of team programming during adaptive soft-
ware maintenance. Reading in Groupware and Computer supported
Cooperative Work. San Mateo, CA: Morgan-Kaufman, 1991.

[Got13] J. Gothelf. Lean UX: Applying lean principles to improve user expe-
rience. ” O’Reilly Media, Inc.”, 2013.

[Hut95] E. Hutchins. Cognition in the Wild. MIT press, 1995.

[Kar13] Charles F. F. Karney. Algorithms for geodesics. Journal of Geodesy,
87(1):43–55, Jan 2013.

[Kru00] S. Krug. Don’t make me think. New Riders, 2000.

[Nar96] B.A. Nardi. Studying context: A comparison of activity theory, situ-
ated action models, and distributed cognition. Context and conscious-
ness: Activity theory and human-computer interaction, 69102, 1996.

[nme18] National Marine Electronics Association. https://www.nmea.org,
2018.

[orc18] ORC Organization. http://www.orc.org/, 2018.

[RC08] J. Rubin and D. Chisnell. Handbook of Usability Testing. Wiley,
second edition, 2008.

[top18] Movable Type Scripts. https://www.movable-type.co.uk/

scripts/latlong.html, 2018.

32

